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Abstract

This paper has two goals. First, we propose the ‘pseudo-traction—electric displacement’ method for solving
the interaction problem of multiple parallel cracks in transversely isotropic piezoelectric ceramics. Second,
we present a fundamental understanding for the role that the electric displacement loading plays in the
interaction problem. Detailed comparisons between the results under the compound mechanical—electric
loading conditions and those derived under purely mechanical loading conditions are performed. It is shown
that the mechanical fracture parameters such as the stress intensity factors are no longer independent of the
electric loading as they would be in single crack problems. Quite contrary, the electric displacement loading
has a significant influence on the stress intensity factors, the total potential energy release rate and the
mechanical strain energy release rate. This important conclusion is mainly due to the interaction effect, i.e.,
one of the multiple cracks releases the stresses and disturbs the electric fields near the other crack. It is also
found that there are some special relative locations for the multiple parallel cracks at which the electric
displacement loading has no effect on the Mode I stress intensity factor. However, the mechanical strain
energy release rate has no such a property. © 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

Fracture problems in piezoelectric media have received considerable attention in the past ten
years. Sosa and Pak (1990), Sosa (1991, 1992), Pak (1990, 1992) and Suo et al. (1992) investigated
the crack problems in two-dimensional piezoelectric ceramics. The fracture parameters: the stress
intensity factors (SIF’s), the electric displacement intensity factor (EDIF) and the potential energy
release rate (TPERR or the J-integral) are defined by them. This made a good foundation of
fracture mechanics of piezoelectric ceramics. Recently, Pak and Sun (1995a, b) have shown that
the SIF’s and the TPERR are not suitable for describing the fracture behavior of piezoelectric
ceramics. Thus, they proposed a new fracture criterion based on the mechanical strain energy
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release rate (MSERR). The conclusions derived by them agree with experimental evidences which
show that the positive electric fields aid the crack propagation, while the negative electric fields
impede crack propagation. Pak and Carman (1997) have shown that electric fatigue of pie-
zoceramics is attributable to the presence of internal defects. Moreover, they present an analytical
solution to calculate the stress concentrations around an elliptical void under purely electric
loading. Under the condition of neglecting the interaction effect among the defects, they concluded
that there exists an optimal property of the piezoelectric ceramics for eliminating the stress
concentrations. What is more, this optimal property is independent of the defect geometry such
that it could be applied to the crack problems.

In this study, the authors address their attention on the interaction problem of multiple parallel
cracks in transversely isotropic piezoelectric ceramics. First, the elementary solution of a finite
crack subjected to concentrated forces and concentrated electric displacements on the crack faces
is derived in Section 2. After doing so, the ‘pseudo-traction—electric displacement’ (PTED) method
is proposed and a system of integral equations is deduced in Section 3. Finally, several numerical
examples are presented and the results of the interaction problems under the compound mech-
anical—-electric loading conditions are compared in Section 4 with those derived previously under
purely mechanical loading conditions. Since one of the multiple cracks releases the stresses and
disturbs the electric fields induced by the electric loading near the other crack, the mechanical
parameters such as SIF’s are no longer independent of the electric loading as they would be in
single crack problems shown by Sosa (1992) and Pak (1992). Quite contrary, the results show that
the electric displacement effect plays an important role in the present interaction problems of
multiple cracks. From the results obtained in this paper, it can also be seen that the electric
displacement loading may have increasing or decreasing effects on the Mode I SIF. Moreover,
these effects are governed by the electric displacement loading level and the relative location of the
multiple cracks. The positive electric displacement loading has increasing effects for some location
angles, while it has decreasing effects for other location angles. On the contrary, the negative
electric displacement loading has converse effects from the effects of positive electric displacement
loading for the same location angles. The location distance mainly influences the intensity of the
interaction effect. Thus, the larger location distance makes the interaction effect weaker, while the
small location distance makes it stronger. It can also be seen that the electric displacement loading
has more significant influence on the mechanical strain energy release rate (MSERR) than that on
the Mode I SIF and the positive electric displacement loading makes the MSERR increase, while
the negative electric displacement loading leads to the MSERR decreasing. Furthermore, the
MSERR changes linearly as the electric displacement loading increases in the interaction problems,
although the slope is changed comparing with the slope in single crack problems. However, in the
collinear cases of multiple cracks, the mechanical loading and the electric loading are uncoupled.
Therefore, the mechanical loading only influences the SIF’s, while the electric loading only affects
the EDIF in these special circumstances.

2. FElementary solutions

Consider the two-dimensional problem in transversely isotropic piezoelectric ceramics under
plane strain conditions. The y-axis shown in Fig. 1 is parallel to the poling direction of the
piezoelectric materials. Then, the constitutive equations can be written as (Sosa, 1992):
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Fig. 1. A finite crack is subjected to concentrated loading.
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where, ¢;;, 0;;, D, and E, are strain, stress, electric displacement and electric field, respectively and
a;, b; and 6, are reduced material constants.
The stress and the electric displacement components can be expressed by three complex potentials
®.(Z,) (k =1,2,3) from the following relations (Sosa, 1992):
3 e —

o1 = Gy (D(Z), Z) = ), (i O (Zy) + 1 O (Z))]

k=1

3

022 = G (D(Z), Z) = ), [P (Z,) + D (Z))]

k=1

712 = Go(@u(Z). Z) = = ¥ [ @u(Z0) +u (2]

3
D, = Gs(O(Zy), Zy) = Y [t @ (Z) + A @i (Z)]
K=

D, = Gy(O(Z). Z) = — Y. [u®u(Z) + D (Z0)] )

k=1
where the overbar denotes the complex conjugation and:
Ly = X+ Wy
A = [(ba, ‘f’bls)ﬂi +b5,]/(0, 1#13 +05,) (k=1,2,3) (3)

1 are three roots with positive imaginary parts of the following governing equation:
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where

A=a;0,

B=a,10,,+2a,,0,,+a;;0,, +b§1 +b%3 +2by,by5
C = a5,0114+2a1,025+ 033025 +2b51b35 +2b,3b5,
D =a, 6, +b3,

(%)
As shown in Fig. 1, a finite crack with length 2« in an infinite piezoelectric ceramic is loaded by
the concentrated forces P and ¢ and the concentrated electric displacement D, on the crack faces.

The poling direction of the material is assumed to be the direction of the y-axis.
From the conditions:

05,(X) = 05, (X)

oh(x) =0n(x) (y=0)
D3 (x) =D (x)

(6)
we can obtain the following relations:

30,06 (9] = T [0~ (]

e

000~ BB (0] = T [0~ B(]

1

k; [ @i () = 2Dy ()]

3 _— -

Y () = 4@ (x)] (7
k=1
which are the well-known simplest Rieman—Hilbert problems, whose solutions are complex hol-

omorphic functions. According to the remote conditions, the functions should be zero in the
present problem without doubt. Then, the following relations are derived:

PLACAESIACS

3 3
Z w®(Zy) = Z W@ (Zy)
k=1 k=1

w

3 — -
;Lk(D/c(Zk) = Z ikq)k(zk)
1 k=1

k

(®)

The boundary conditions on the crack faces as shown in Fig. 1 are:

022(X) = 032(x) = Po(x—5)
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oih(x =015(x) = Qo(x—s) (y=0,|x] <a)
D3 (x) = D5 (x) = D,6(x—5) )

Substituting eqns (2) into eqns (9), the following relations are obtained:

i [D;F (x) + D, (x)] = Po(x—3s)
Z, (1D () Dy (X)] = — Q(x—)

[ @il (x) + 2D (x)] = —D>3(x—s) (10)

1

N

k

After substituting eqn (8) into eqn (10), a system of linear equations is derived whose solutions
are:

O () + O (x) =(Ar P+ A0+ A3 Dr)o(x—s)  (k=1,2,3) (I
where A;; are complex elements of the following complex matrix:

Paks —U3hy Az—Ay  po—Us
=[4 11] = ,U3 =M As A=Ay s — (12)
Uity —Moly  Aa—Ay My — s

where
A= (A —23) + (A3 —21) + 3 (A — 45) (13)

Equation (11) is the typical Rieman—Hilbert problem. We can derive the solutions for the
problem as follows:

(A P+ A0+ A3 D)) [ a* —s* \'?
) = k=1,2,3 "’
i (Z1) 2n(s—Zy) 7 q? ( ) (14)

where s refers to the distance between the traction acting point and the origin.

3. Pseudo-traction—electric displacement (PTED) method

Consider a two-dimensional infinite transversely isotropic piezoelectric ceramic containing N
arbitrarily located cracks perpendicular to the poling direction of the material. As shown in Fig.
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Fig. 2. The interaction problem among N cracks.

2, the loading conditions are the remote stresses o5, and ¢75 and the remote electric displacement
D% . The local rectangular coordinate systems x;y; (i = 1,2,..., N) are taken at the center of the
ith crack, respectively. The direction of the y-axis is taken to be the poling direction of the material,
while ¢,, d; and a, denote the location angle, location distance and the half-length of the ith crack.

All the crack faces are assumed to satisfy the traction-free conditions and the charge-free
condition, i.e., D, = 0.

The interaction problem among N cracks shown in Fig. 2, can be decomposed into N+ 1
subproblems as treated by Horii and Nemat-Nasser (1985) in brittle solids.

In subproblem 1, the piezoelectric solid is loaded by remote stress ¢35, and ¢7% and the remote
electric displacement D5". The normal stress f,,,(s), tangential stress f;,0(s) and the electric dis-
placement f;,,(s) at any point (s, 0) on the ith crack faces in the coordinate systems x,y; are:

Jipo(s) = 03,
Jio(s) =012 i=1,2,...,N
Jipo(s) = DT (195)

In subproblem i+1 (i = 1,2, ..., N), the ith crack is subjected to the unknown pseudo-traction
Pi(x;) and Q(x;) and the unknown pseudo-electric displacement d5(x;). Of course, the total
contributions of the pseudo-loading could be determined by using the well-known superimposing
technique and by integrating the elementary solutions of the finite crack discussed in Section 2
along the crack length. After doing so, the normal stress o, (s), the tangential stress ¢, (s) and
the second electric displacement component D’ (s) at any point (s, 0) on the jth (j # i) crack faces
are then obtained as follows:
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where the normal stress f,,,,(x, 5), f,i,(xX, 5), f,,i(X, 5), the tangential stress f,,;,(x, 5), fi4i,(X, $), f4ia(X, 5)
and the electric displacement f,p;,(x, 5), fipi,(X, 5), fipia(X, 5) at the point (s, 0) on the jth crack faces,
are induced from unit forces P and Q and the unit electric displacement D, located at a point (x, 0)
on the ith crack faces, respectively (see Appendix) and Z, = Re(Z)+w Im(2),
Z=de%—de+s.

As well known, the original problem is the superposition of the N+ 1 subproblems mentioned
above, while the traction-free conditions and the charge-free conditions on all the crack faces
should be met, which leads to the following integral equations.

Pi(s)+ ;0 o () = —fipo(s)  (J#1)
Q'(s)+ _;0 a2 (s) = —fi(s)  (J #1)

d>(s) + _;ODE’(S) = —fipo(s) (J#1D)

(i=12,...,N) (17)

Equation (17) is a system of integral equations with kernel functions P'(s), Q'(s) and d5(s)
(i=1,2,...,N). By using the Chebyshev numerical integration method, the system can be trans-
formed into a system of linear equations that can be solved with no further mathematical problem.
So, the pseudo-tractions and the pseudo-electric displacement, ie., P'(s), Q'(s) and d5(s)
(i=1,2,...,N) distributed along all the crack faces can be obtained numerically. The stress and
electric intensity factors of ith crack tips can then be obtained as follows:

(fa;

KM= —| Pis)(@+9)"(@—s) "2/ /na,ds
Ki=—| Pis)@—9)"(@+s) "7/ na ds
) (fa; ] ,
Kfi'=—| Q'®(a+9)"(@—9""J/rmads (i=12....N)

v —4a;
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Cra.

Ki=—| 0®)@—9"(@+s "2/ /nads
KN = — | ds@(@+9)"(a—9)""//na; ds
K= — | i) a—9""(a+9)""2//ma ds (18)

In the two-dimensional problems of piezoelectric ceramics, the J-integral defined by Pak (1990)
and Suo et al. (1992), which has the clear physical significance as the total potential energy release
rate, is given as the following formulation:

1 ou,, o9
J= L 2(cr,,-,s,;,-—D,-E,-) dy—n;o,, o, ds—n;D; o, ds (19)

where u, and ¢ are displacement and electric potential, respectively. I' is a close integral contour.

The J-integrals J* and J" for the right and left tips of the ith crack, respectively, are functions
of stress intensity factors and electric intensity factor. Following the ideas presented by Suo et al.
(1992), the J* and J“ integrals can be expressed by the intensity factors as:

JR = L [KMTHIK® (20)
JH = [KYTTHIK"] 1)
where
[K™) = [KE K& KN (22)
[K"]=[Ki Ki' KOT° (23)
H is a 3 x 3 matrix related to the material constants as:
H=2Re(iAB™") (24)
where
Py P2 Ps
Ml =9 9. q5 (25)
Lry 2 T3

[~y —Hs
[B] =| 1 1 1 (26)

and

Pr = all,u/%_'—am_bﬂ}%
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Table 1
The reduced material constants of the PZT-4 piezoelectric ceramic

ap ap a as3
8.205x 10~ "2 —3.144x 107" 7.495x 1012 19.3x107 2 (m?> N1
by, by b3
—16.62x107° 23.96x 1073 39.4x1073 m*C™
o 02
7.66 x 107 9.82x 107 (VENTH

qr = (alzﬂl%+a22_b22}~k)/,uk k=123
1= —(bi3+011 4y 27

The mechanical strain energy release rate defined by Pak and Sun (1995a, b) have two modes.
Their definition formulations are given as:

1 o

G = (l)l{lgzéf 015 (X)Au, (60 —x)dx for the Mode I (28)
0
1 o

GY = }>1£1325J 01> (X)Au; (6 —x)dx for the Mode II (29)
0

For the sake of convenience, only the Mode 1 is considered in this paper. G} can be re-expressed
by the stress intensity factors and the electric displacement intensity factor as:

GY' = %(H21K1K11+H22K12+H23KIKC) 30)

4. Numerical examples

Two numerical examples are presented in this section to give a fundamental understanding for
the role that the electric displacement loading plays in the interaction problem. The PZT-4 ceramic
is chosen as the piezoelectric material under consideration with the reduced material constants
listed in Table 1 (Sosa, 1992). All the numerical calculations are performed under plane strain
conditions.

First, the interaction problem of two cracks with equal lengths is considered under three kinds
of compound mechanical-electric loading conditions, 1ie. (i) 6% #0, o5 =0,

P=10"%55 CN™', (i) 65 #0, 675 =0, DY = —107%¢% CN~', (iii)) 65 #0, 073 =0,

5 = 0. The last one is under the purely mechanical loading conditions of Mode I, whose results
are well known. As shown by Sosa (1992) and Pak (1992), the electric displacement loading has
no influence on the SIF’s in the single crack problems in piezoelectric ceramics. However, it is not
the case in the present interaction problem, i.e., the SIF’s are no longer independent of the electric
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loading as they would be in the single crack problems (see Figs 3 and 4), since one of the cracks
not only releases the stresses, but also disturbs the electric fields near the other crack induced by
the electric displacement loading. The normalized SIF Kj'/K{° at the tip A against the location
angle ¢ is plotted in Fig. 3, while against the normalized distance d/a is plotted in Fig. 4. It is seen
that the influence of the electric loading on the SIF at the tip A4 is significant. This conclusion could
be given easily by making comparisons among the results derived under the three kinds of loading
conditions mentioned above. The effect of the electric displacement loading on the SIF seems
complicated. In the ranges of location angle ¢ between 8 and 46° and between 108 and 180°, the
positive electric displacement loading has an effect increasing the SIF, while in the ranges between
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Table 2
The values of fracture parameters change against d, in the collinear case under the purely electric displacement loading
conditions

d,=(d—a)la 0.1 0.2 0.5 1.0 1.5 2.0 3.0 4.0

K{/K¢ 1.79 1.49 1.23 1.11 1.07 1.05 1.03 1.02
K{/KZ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
K{/KZ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0 and 8° and between 46 and 108° it has an effect of decreasing the SIF. On the other hand, the
negative electric displacement loading just has an opposite effect from those induced by the positive
electric displacement loading (see Figs 3 and 4). This means that the effect of the electric loading
on the SIF is governed not only by the electric loading level, but also by the relative locations of the
interacting cracks. As could be imagined the SIF’s are still independent of the electric displacement
loading for the collinear case (see Table 2). Besides this, it is of interest to note that there are three
special locations, i.e., ¢ = 8, 46 and 108°, at which the electric loading has no effect on the SIF
K{'/K{. These special angles could be called the neutral electric displacement angles (NEDA).
Moreover, it is seen that the positive electric loading increases the maximum amplification effect
in the range of K{'//K{" > 1 and also increases the maximum shield effect in the range of
K{/K{ < 1. However, the negative electric loading has not the opposite tendency. As regards the
MSERR which governs the crack growth in piezoelectric ceramics (Pak and Sun, 1995a, b), the
electric displacement loading also has a significant effect on it. As shown in Fig. 5, the effect seems
much stronger than that on the SIF discussed above. What is more, it is governed by the electric
displacement loading level with no regard to the relative location angle ¢. Here, GM is the MSERR

2
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Fig. 5. The values of GM*/GY* change against location angle ¢.
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Table 3
The values of normalized MSERR change against d, in the collinear case under compound mechanical-electric loading
conditions (65 # 0,65 =0,D5 =10"°655 CN™)

d,=(d—a)la 0.1 0.2 0.5 1.0 1.5 2.0 3.0 4.0

GGy 7.33 5.06 3.44 2.82 2.60 2.50 2.40 2.35

at the tip 4, while G} is the MSERR 1in a single crack problem with the same length under the
purely mechanical loading conditions (655 # 0). The positive electric displacement loading makes
the normalized MSERR GM*/GM* increase. On the contrary, the negative electric displacement
loading makes the MSERR decrease. In the collinear case, the MSERR is quite dissimilar to the
SIF. Table 3 shows the results of G}**/GY'™ in the collinear case. It is seen that, unlike the SIF,
the MSERR is dependent on the electric displacement loading and that the dependence is still
large although the normalized distance d, = (d— a)/a becomes very large.

Second, the interaction problem of two cracks with different lengths is considered. The results
derived, respectively, under the compound mechanical—¢lectric loading conditions and under the
purely mechanical loading conditions are shown in Figs 6 and 7. The influence of the electric
displacement loading on the SIF and the MSERR seems similar to that in the interaction problem
of two cracks with equal lengths discussed above, although the neutral electric displacement angles
for the case of d, = 0.15a (d, is the distance between the tip A and the center of the short crack)
became 15, 64 and 136°.

Finally, the difference between the TPERR and the MSERR is discussed for the interaction
problem of two cracks with different lengths under the compound mechanical-electric loading
conditions (65, # 0,073 = 0, D5 # 0). As shown in Fig. 8, the plotted curves against the electric
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Fig. 6. The values of Ki'/K;{* change against location angle .
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displacement loading D5 with the legend 1 correspond to the single crack problem without
interaction, while the curves with legend 2 correspond to the two cracks interaction problem. It is
seen that the TPERR seems strongly dependent on the electric displacement loading level. What-
ever, the electric loading is positive or negative, the TPERR always makes the negative values for
larger electric loading levels. Quite contrary, the MSERR has a linear relation to the electric
displacement loading level. As the electric loading increases from DY = —10"°¢5 C N~ to

¥ =10""65 CN~', the MSERR increases proportionally although the slope is different from
that in the single crack problem.
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Table 4
Numerical examinations by using a consistency check under compound mechanical-electric loading conditions
(03 #0,07, =0,D5 = 1065, CN")

@ =(d, = 0.13q) 30° 60° 90° 120°
Crack 1 (2a) KR/KE 1.2358 0.9918 0.8585 0.8110
KR/K —0.1141 —0.1809 —0.1183 —0.0152
KR/K 1.1013 0.9796 0.9268 0.9054
KY/K? 1.0154 1.0137 1.0100 1.0058
KL/K 0.0027 ~0.0010 ~0.0035 ~0.0040
KL/K? 1.0103 1.0077 1.0054 1.0034
JO —0.2940 —0.0993 0.0543 0.0909
Crack 2 (0.2a) KR/K 0.7136 0.7496 0.7351 0.6573
KR/K? 0.0816 0.0212 —0.0895 —0.2049
KR/K 0.6285 0.5962 0.5566 0.5047
KL/K? 1.0116 0.7098 0.4596 0.2491
KL/KE —0.0569 —0.2296 —0.2741 —0.2379
KL/K? 0.7621 0.5431 0.3945 0.2696
Jo 0.2940 0.0993 —0.0543 ~0.0909
J* 0.0000 0.0000 0.0000 0.0000

5. Consistency check

The numerical results are confirmed by using a consistency check proposed in this section.
Turning back to see Fig. 2 and eqns (19)—(30), it is clear that the total contributions of multiple
cracks to the J-integral (i.e., the TPERR) should be zero due to the remote loading conditions
(Che and Hasebe, 1998):

JVV‘:J(|)+J(2)+...+J(f)+...+J(N):O (31)
where J is evaluated along the T'; close contour in Fig. 2 and has the following relation with the
J-integrals J®? and J™ of the right and left tips of the ith crack, respectively:

JO = J®R gL (j=1,2,...,N) (32)

When the SIF’s and the EDIF of all the crack tips are known, the J integral could be evaluated
by using eqns (20) and (21) without any difficulties. Numerical examination for the two crack
interaction problem with different lengths discussed above, different location angles, ¢ = 30, 60,
90 and 120°, and the same distance d, = 0.13a are shown in Table 4, in which the consistency
check, i.e., eqn (31) is satisfied.

6. Conclusions and discussion

From the above performed discussions, the following conclusions are obtained:

(1) The PTED method is effective to treat multiple crack interaction problems in the piezoelectric
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ceramics. This method is confirmed in this paper by using a consistence check specially
proposed, i.e., eqn (31).

The stress intensity factors at any tip for multiple crack interaction problems in piezoelectric
ceramics are no longer independent of the electric displacement loading as they would be in
the single crack problem. The dependence of the SIF’s on the electric displacement loading is
governed not only by the electric loading level, but also by the relative location of multiple
cracks.

There are the so-called NEDA at which the electric loading has no effect on the interacting
SIF’s. However, the angles are dependent on the normalized distance between the centers of
multiple cracks.

The electric displacement loading has much stronger effect on the mechanical strain energy
release rate than on the Mode I SIF in the present interaction problem. The positive electric
displacement loading makes the MSERR increase, while the negative electric displacement
loading makes the MSERR decrease. Thus, the same conclusion could be given as Pak and
Sun (1995a, b) did in single crack problems.

The MSERR increases proportionally as the electric loading level increases from the negative
values to positive values. This means that the positive electric loading aids the crack propa-
gation while the negative electric loading impedes the crack propagation. The only difference
of the MSERR curves between multiple crack problems and single crack problems is the slope
along which the MSERR changes. In the present two parallel crack interaction problems, the
slope of the MSERR s larger than that in single crack problems.
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Appendix

Jwin(8) = G (O (Zy), Z)) (P=1,4q=0,D, =0)
Jiain(8) = G2(O(Zy), Z)) (P=1,4q=0,D, =0)
f;’Dip(s) = G3(P(Z0).Z) (P=1,4q=0,D,=0)
.f/'piq(s) =G (P (Z0).Z) (P=0,9=1,D,=0)
Jigia(8) = G2(®(Z,), Z)) (P=0,9=1,D, =0)
Jipig(8) = G3(P(Zy), Z,) (P=0,9=1,D,=0)
Jpia(s) = G (®(Zy), Z;) (P=0,9=0,D,=1)
Jigia(s) = G2 (@ (Zy), Z) (P=0,9=0,D,=1)
ijid(s) = G3(P(Z).Z) (P=0,9=0,D,=1)
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i=1,2,....N j=12,...,N j#i

where ®@,(Z,) are the elementary solutions discussed in Section 2.
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