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Abstract

This paper has two goals[ First\ we propose the {pseudo!tractionÐelectric displacement| method for solving
the interaction problem of multiple parallel cracks in transversely isotropic piezoelectric ceramics[ Second\
we present a fundamental understanding for the role that the electric displacement loading plays in the
interaction problem[ Detailed comparisons between the results under the compound mechanicalÐelectric
loading conditions and those derived under purely mechanical loading conditions are performed[ It is shown
that the mechanical fracture parameters such as the stress intensity factors are no longer independent of the
electric loading as they would be in single crack problems[ Quite contrary\ the electric displacement loading
has a signi_cant in~uence on the stress intensity factors\ the total potential energy release rate and the
mechanical strain energy release rate[ This important conclusion is mainly due to the interaction e}ect\ i[e[\
one of the multiple cracks releases the stresses and disturbs the electric _elds near the other crack[ It is also
found that there are some special relative locations for the multiple parallel cracks at which the electric
displacement loading has no e}ect on the Mode I stress intensity factor[ However\ the mechanical strain
energy release rate has no such a property[ Þ 0888 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

Fracture problems in piezoelectric media have received considerable attention in the past ten
years[ Sosa and Pak "0889#\ Sosa "0880\ 0881#\ Pak "0889\ 0881# and Suo et al[ "0881# investigated
the crack problems in two!dimensional piezoelectric ceramics[ The fracture parameters] the stress
intensity factors "SIF|s#\ the electric displacement intensity factor "EDIF# and the potential energy
release rate "TPERR or the J!integral# are de_ned by them[ This made a good foundation of
fracture mechanics of piezoelectric ceramics[ Recently\ Pak and Sun "0884a\ b# have shown that
the SIF|s and the TPERR are not suitable for describing the fracture behavior of piezoelectric
ceramics[ Thus\ they proposed a new fracture criterion based on the mechanical strain energy
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release rate "MSERR#[ The conclusions derived by them agree with experimental evidences which
show that the positive electric _elds aid the crack propagation\ while the negative electric _elds
impede crack propagation[ Pak and Carman "0886# have shown that electric fatigue of pie!
zoceramics is attributable to the presence of internal defects[ Moreover\ they present an analytical
solution to calculate the stress concentrations around an elliptical void under purely electric
loading[ Under the condition of neglecting the interaction e}ect among the defects\ they concluded
that there exists an optimal property of the piezoelectric ceramics for eliminating the stress
concentrations[ What is more\ this optimal property is independent of the defect geometry such
that it could be applied to the crack problems[

In this study\ the authors address their attention on the interaction problem of multiple parallel
cracks in transversely isotropic piezoelectric ceramics[ First\ the elementary solution of a _nite
crack subjected to concentrated forces and concentrated electric displacements on the crack faces
is derived in Section 1[ After doing so\ the {pseudo!tractionÐelectric displacement| "PTED# method
is proposed and a system of integral equations is deduced in Section 2[ Finally\ several numerical
examples are presented and the results of the interaction problems under the compound mech!
anicalÐelectric loading conditions are compared in Section 3 with those derived previously under
purely mechanical loading conditions[ Since one of the multiple cracks releases the stresses and
disturbs the electric _elds induced by the electric loading near the other crack\ the mechanical
parameters such as SIF|s are no longer independent of the electric loading as they would be in
single crack problems shown by Sosa "0881# and Pak "0881#[ Quite contrary\ the results show that
the electric displacement e}ect plays an important role in the present interaction problems of
multiple cracks[ From the results obtained in this paper\ it can also be seen that the electric
displacement loading may have increasing or decreasing e}ects on the Mode I SIF[ Moreover\
these e}ects are governed by the electric displacement loading level and the relative location of the
multiple cracks[ The positive electric displacement loading has increasing e}ects for some location
angles\ while it has decreasing e}ects for other location angles[ On the contrary\ the negative
electric displacement loading has converse e}ects from the e}ects of positive electric displacement
loading for the same location angles[ The location distance mainly in~uences the intensity of the
interaction e}ect[ Thus\ the larger location distance makes the interaction e}ect weaker\ while the
small location distance makes it stronger[ It can also be seen that the electric displacement loading
has more signi_cant in~uence on the mechanical strain energy release rate "MSERR# than that on
the Mode I SIF and the positive electric displacement loading makes the MSERR increase\ while
the negative electric displacement loading leads to the MSERR decreasing[ Furthermore\ the
MSERR changes linearly as the electric displacement loading increases in the interaction problems\
although the slope is changed comparing with the slope in single crack problems[ However\ in the
collinear cases of multiple cracks\ the mechanical loading and the electric loading are uncoupled[
Therefore\ the mechanical loading only in~uences the SIF|s\ while the electric loading only a}ects
the EDIF in these special circumstances[

1[ Elementary solutions

Consider the two!dimensional problem in transversely isotropic piezoelectric ceramics under
plane strain conditions[ The y!axis shown in Fig[ 0 is parallel to the poling direction of the
piezoelectric materials[ Then\ the constitutive equations can be written as "Sosa\ 0881#]
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Fig[ 0[ A _nite crack is subjected to concentrated loading[
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where\ oij\ sij\ Di and Ei are strain\ stress\ electric displacement and electric _eld\ respectively and
aij\ bij and dii\ are reduced material constants[

The stress and the electric displacement components can be expressed by three complex potentials
Fk"Zk# "k � 0\ 1\ 2# from the following relations "Sosa\ 0881#]

s00 � G3"Fk"Zk#\ Zk# � s
2

k�0

ðm1
kFk"Zk#¦m1

kFk"Zk#Ł

s11 � G0"Fk"Zk#\ Zk# � s
2

k�0

ðFk"Zk#¦Fk"Zk#Ł

s01 � G1"Fk"Zk#\ Zk# � − s
2

k�0

ðmkFk"Zk#¦mkFk"Zk#Ł

D0 � G4"Fk"Zk#\ Zk# � s
2

k�0

ðlkmkFk"Zk#¦lkmkFk"Zk#Ł

D1 � G2"Fk"Zk#\ Zk# � − s
2

k�0

ðlkFk"Zk#¦lkFk"Zk#Ł "1#

where the overbar denotes the complex conjugation and]

Zk � x¦mky

lk � ð"b10¦b02#m1
k¦b11Ł:"d00m

1
k¦d11# "k � 0\ 1\ 2# "2#

mk are three roots with positive imaginary parts of the following governing equation]
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Am5¦Bm3¦Cm1¦D � 9 "3#

where

A � a00d00

B � a00d11¦1a01d00¦a22d00¦b1
10¦b1

02¦1b10b02

C � a11d00¦1a01d11¦a22d11¦1b10b11¦1b02b11

D � a00d00¦b1
11 "4#

As shown in Fig[ 0\ a _nite crack with length 1a in an in_nite piezoelectric ceramic is loaded by
the concentrated forces P and q and the concentrated electric displacement D1 on the crack faces[
The poling direction of the material is assumed to be the direction of the y!axis[

From the conditions]

s¦
11"x# � s−

11"x#

s¦
01"x# � s−

01"x# "y � 9#

D¦
1 "x# � D−

1 "x# "5#

we can obtain the following relations]

s
2

k�0

ðFk"x#−FÞk"x#Ł¦ � s
2

k�0

ðFk"x#−FÞk"x#Ł−

s
2

k�0

ðmkFk"x#−mkFÞk"x#Ł¦ � s
2

k�0

ðmkFk"x#−mkFÞk"x#Ł−

s
2

k�0

ðlkFk"x#−lkFÞk"x#Ł¦ � s
2

k�0

ðlkFk"x#−lkFÞk"x#Ł− "6#

which are the well!known simplest RiemanÐHilbert problems\ whose solutions are complex hol!
omorphic functions[ According to the remote conditions\ the functions should be zero in the
present problem without doubt[ Then\ the following relations are derived]

s
2

k�0

Fk"Zk# � s
2

k�0

FÞk"Zk#

s
2

k�0

mkFk"Zk# � s
2

k�0

mkFÞk"Zk#

s
2

k�0

lkFk"Zk# � s
2

k�0

lkFÞk"Zk# "7#

The boundary conditions on the crack faces as shown in Fig[ 0 are]

s¦
11"x# � s−

11"x# � Pd"x−s#
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s¦
01"x � s−

01"x# � Qd"x−s# "y � 9\ =x= ³ a#

D¦
1 "x# � D−

1 "x# � D1d"x−s# "8#

Substituting eqns "1# into eqns "8#\ the following relations are obtained]

s
2

k�0

ðF¦
k "x#¦FÞ−

k "x#Ł � Pd"x−s#

s
2

k�0

ðmkF¦
k "x#mkFÞ−

k "x#Ł � −Qd"x−s#

s
2

k�0

ðlkF¦
k "x#¦lkFÞ−

k "x#Ł � −D1d"x−s# "09#

After substituting eqn "7# into eqn "09#\ a system of linear equations is derived whose solutions
are]

F¦
k "x#¦F−

k "x# �"Ak0P¦Ak1Q¦Ak2D1#d"x−s# "k � 0\ 1\ 2# "00#

where Aij are complex elements of the following complex matrix]

A � ðAijŁ �
0
D &

m1l2−m2l1 l2−l1 m1−m2

m2l0−m0l2 l0−l2 m2−m0

m0l1−m1l0 l1−l0 m0−m1
' "01#

where

D � m0"l1−l2#¦m1"l2−l0#¦m2"l0−l1# "02#

Equation "00# is the typical RiemanÐHilbert problem[ We can derive the solutions for the
problem as follows]

Fk"Zk# �
"Ak0P¦Ak1Q¦Ak2D1#

1p"s−Zk# 0
a1−s1

Z1
k−a11

0:1

"k � 0\ 1\ 2# "03#

where s refers to the distance between the traction acting point and the origin[

2[ Pseudo!tractionÐelectric displacement "PTED# method

Consider a two!dimensional in_nite transversely isotropic piezoelectric ceramic containing N
arbitrarily located cracks perpendicular to the poling direction of the material[ As shown in Fig[
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Fig[ 1[ The interaction problem among N cracks[

1\ the loading conditions are the remote stresses s�
11 and s�

01 and the remote electric displacement
D�

1 [ The local rectangular coordinate systems xiyi "i � 0\ 1\ [ [ [ \ N# are taken at the center of the
ith crack\ respectively[ The direction of the yi!axis is taken to be the poling direction of the material\
while 8i\ di and ai denote the location angle\ location distance and the half!length of the ith crack[

All the crack faces are assumed to satisfy the traction!free conditions and the charge!free
condition\ i[e[\ D1 � 9[

The interaction problem among N cracks shown in Fig[ 1\ can be decomposed into N¦0
subproblems as treated by Horii and Nemat!Nasser "0874# in brittle solids[

In subproblem 0\ the piezoelectric solid is loaded by remote stress s�
11 and s�

01 and the remote
electric displacement D�

1 [ The normal stress fip9"s#\ tangential stress fiq9"s# and the electric dis!
placement fiD9"s# at any point "s\ 9# on the ith crack faces in the coordinate systems xiyi are]

fip9"s# � s�
11

fiq9"s# � s�
01 i � 0\ 1\ [ [ [ \ N

fiD9"s# � D�
1 "04#

In subproblem i¦0 "i � 0\ 1\ [ [ [ \ N#\ the ith crack is subjected to the unknown pseudo!traction
Pi"xi# and Qi"xi# and the unknown pseudo!electric displacement di

1"xi#[ Of course\ the total
contributions of the pseudo!loading could be determined by using the well!known superimposing
technique and by integrating the elementary solutions of the _nite crack discussed in Section 1
along the crack length[ After doing so\ the normal stress sji

11"s#\ the tangential stress sji
01"s# and

the second electric displacement component Dji
1"s# at any point "s\ 9# on the jth " j � i# crack faces

are then obtained as follows]
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sji
11"s# � g

ai

−ai

ð fjpip"x\ s#Pi"x#¦fjpiq"x\ s#Qi"x#¦fjpid"x\ s#di
1"x#Ł dx

sji
01"s# � g

ai

−ai

ð fjqip"x\ s#Pi"x#¦fjqiq"x\ s#Qi"x#¦fjqid"x\ s#di
1"x#Ł dx

Dji
1"s# � g

ai

−ai

ð fjDip"x\ s#Pi"x#¦fjDiq"x\ s#Qi"x#¦fjDid"x\ s#di
1"x#Ł dx "05#

where the normal stress fjpip"x\ s#\ fjpiq"x\ s#\ fjpid"x\ s#\ the tangential stress fjqip"x\ s#\ fjqiq"x\ s#\ fjqid"x\ s#
and the electric displacement fjDip"x\ s#\ fjDiq"x\ s#\ fjDid"x\ s# at the point "s\ 9# on the jth crack faces\
are induced from unit forces P and Q and the unit electric displacement D1 located at a point "x\ 9#
on the ith crack faces\ respectively "see Appendix# and Zk � Re"Z#¦mk Im"Z#\
Z � dj ei8 j−di ei8i¦s[

As well known\ the original problem is the superposition of the N¦0 subproblems mentioned
above\ while the traction!free conditions and the charge!free conditions on all the crack faces
should be met\ which leads to the following integral equations[

Pi"s#¦ s
N

j�9

sij
11"s# � −fip9"s# " j � i#

Qi"s#¦ s
N

j�9

sij
01"s# � −fiq9"s# " j � i#

di
1"s#¦ s

N

j�9

Dij
1"s# � −fiD9"s# " j � i#

"i � 0\ 1\ [ [ [ \ N# "06#

Equation "06# is a system of integral equations with kernel functions Pi"s#\ Qi"s# and di
1"s#

"i � 0\ 1\ [ [ [ \ N#[ By using the Chebyshev numerical integration method\ the system can be trans!
formed into a system of linear equations that can be solved with no further mathematical problem[
So\ the pseudo!tractions and the pseudo!electric displacement\ i[e[\ Pi"s#\ Qi"s# and di

1"s#
"i � 0\ 1\ [ [ [ \ N# distributed along all the crack faces can be obtained numerically[ The stress and
electric intensity factors of ith crack tips can then be obtained as follows]

KRi
I � −g

ai

−ai

Pi"s#"ai¦s#0:1"ai−s#−0:1:zpai ds

KLi
I � −g

ai

−ai

Pi"s#"ai−s#0:1"ai¦s#−0:1:zpai ds

KRi
II � −g

ai

−ai

Qi"s#"ai¦s#0:1"ai−s#−0:1:zpai ds "i � 0\ 1\ [ [ [ \ N#
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KLi
II � −g

ai

−ai

Qi"s#"ai−s#0:1"ai¦s#−0:1:zpai ds

KRi
e � −g

ai

−ai

di
1"s#"ai¦s#0:1"ai−s#−0:1:zpai ds

KLi
e � −g

ai

−ai

di
1"s#"ai−s#0:1"ai¦s#−0:1:zpai ds "07#

In the two!dimensional problems of piezoelectric ceramics\ the J!integral de_ned by Pak "0889#
and Suo et al[ "0881#\ which has the clear physical signi_cance as the total potential energy release
rate\ is given as the following formulation]

J � gG

0
1
"sijoij−DiEi# dy−nisip

1up

1x0

ds−niDi

18

1x0

ds "08#

where up and 8 are displacement and electric potential\ respectively[ G is a close integral contour[
The J!integrals JRi and JLi for the right and left tips of the ith crack\ respectively\ are functions

of stress intensity factors and electric intensity factor[ Following the ideas presented by Suo et al[
"0881#\ the JRi and JLi integrals can be expressed by the intensity factors as]

JRi � 0
3
ðKRiŁTHðKRiŁ "19#

JLi � 0
3
ðKLiŁTHðKLiŁ "10#

where

ðKRiŁ � ðKRi
II KRi

I KRi
e ŁT "11#

ðKLiŁ � ðKLi
II KLi

I KLi
e ŁT "12#

H is a 2×2 matrix related to the material constants as]

H � 1 Re"iAB−0# "13#

where

ðAŁ � &
p0 p1 p2

q0 q1 q2

r0 r1 r2
' "14#

ðBŁ � &
−m0 −m1 −m2

0 0 0

−l0 −l1 −l2
' "15#

and

pk � a00m
1
k¦a01−b10lk



J[!J[ Han\ Y[!H[ Chen : International Journal of Solids and Structures 25 "0888# 2264Ð2289 2272

Table 0
The reduced material constants of the PZT!3 piezoelectric ceramic

a00 a01 a11 a22

7[194×09−01 −2[033×09−01 6[384×09−01 08[2×09−01 "m1 N−0#

b10 b11 b02

−05[51×09−2 12[85×09−2 28[3×09−2 "m1 C−0#

d00 d11

6[55×096 8[71×096 "V1 N−0#

qk � "a01m
1
k¦a11−b11lk#:mk k � 0\ 1\ 2

rk � −"b02¦d00lk#mk "16#

The mechanical strain energy release rate de_ned by Pak and Sun "0884a\ b# have two modes[
Their de_nition formulations are given as]

GM
I � lim

d:9

0
1d g

d

9

s11"x#Du1"d−x# dx for the Mode I "17#

GM
II � lim

d:9

0
1d g

d

9

s01"x#Du0"d−x# dx for the Mode II "18#

For the sake of convenience\ only the Mode I is considered in this paper[ GM
I can be re!expressed

by the stress intensity factors and the electric displacement intensity factor as]

GM
I � 0

3
"H10KIKII¦H11K

1
I ¦H12KIKe# "29#

3[ Numerical examples

Two numerical examples are presented in this section to give a fundamental understanding for
the role that the electric displacement loading plays in the interaction problem[ The PZT!3 ceramic
is chosen as the piezoelectric material under consideration with the reduced material constants
listed in Table 0 "Sosa\ 0881#[ All the numerical calculations are performed under plane strain
conditions[

First\ the interaction problem of two cracks with equal lengths is considered under three kinds
of compound mechanicalÐelectric loading conditions\ i[e[ "i# s�

11 � 9\ s�
01 � 9\

D�
1 � 09−7s�

11 C N−0\ "ii# s�
11 � 9\ s�

01 � 9\ D�
1 � −09−7s�

11 C N−0\ "iii# s�
11 � 9\ s�

01 � 9\
D�

1 � 9[ The last one is under the purely mechanical loading conditions of Mode I\ whose results
are well known[ As shown by Sosa "0881# and Pak "0881#\ the electric displacement loading has
no in~uence on the SIF|s in the single crack problems in piezoelectric ceramics[ However\ it is not
the case in the present interaction problem\ i[e[\ the SIF|s are no longer independent of the electric
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Fig[ 2[ The values of KA
I :K�

I change against location angle 8[

Fig[ 3[ The values of KA
I :K�

I change against normalized location distance d:a[

loading as they would be in the single crack problems "see Figs 2 and 3#\ since one of the cracks
not only releases the stresses\ but also disturbs the electric _elds near the other crack induced by
the electric displacement loading[ The normalized SIF KA

I :K�
I at the tip A against the location

angle 8 is plotted in Fig[ 2\ while against the normalized distance d:a is plotted in Fig[ 3[ It is seen
that the in~uence of the electric loading on the SIF at the tip A is signi_cant[ This conclusion could
be given easily by making comparisons among the results derived under the three kinds of loading
conditions mentioned above[ The e}ect of the electric displacement loading on the SIF seems
complicated[ In the ranges of location angle 8 between 7 and 35> and between 097 and 079>\ the
positive electric displacement loading has an e}ect increasing the SIF\ while in the ranges between
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Table 1
The values of fracture parameters change against dn in the collinear case under the purely electric displacement loading
conditions

dn �"d−a#:a 9[0 9[1 9[4 0[9 0[4 1[9 2[9 3[9

KA
e :K�

e 0[68 0[38 0[12 0[00 0[96 0[94 0[92 0[91
KA

I :K�
e 9[99 9[99 9[99 9[99 9[99 9[99 9[99 9[99

KA
II:K

�
e 9[99 9[99 9[99 9[99 9[99 9[99 9[99 9[99

9 and 7> and between 35 and 097> it has an e}ect of decreasing the SIF[ On the other hand\ the
negative electric displacement loading just has an opposite e}ect from those induced by the positive
electric displacement loading "see Figs 2 and 3#[ This means that the e}ect of the electric loading
on the SIF is governed not only by the electric loading level\ but also by the relative locations of the
interacting cracks[ As could be imagined the SIF|s are still independent of the electric displacement
loading for the collinear case "see Table 1#[ Besides this\ it is of interest to note that there are three
special locations\ i[e[\ 8 � 7\ 35 and 097>\ at which the electric loading has no e}ect on the SIF
KA

I :K�
I [ These special angles could be called the neutral electric displacement angles "NEDA#[

Moreover\ it is seen that the positive electric loading increases the maximum ampli_cation e}ect
in the range of KA

I :K�
I × 0 and also increases the maximum shield e}ect in the range of

KA
I :K�

I ³ 0[ However\ the negative electric loading has not the opposite tendency[ As regards the
MSERR which governs the crack growth in piezoelectric ceramics "Pak and Sun\ 0884a\ b#\ the
electric displacement loading also has a signi_cant e}ect on it[ As shown in Fig[ 4\ the e}ect seems
much stronger than that on the SIF discussed above[ What is more\ it is governed by the electric
displacement loading level with no regard to the relative location angle 8[ Here\ GMA

I is the MSERR

Fig[ 4[ The values of GMA
I :GM�

I change against location angle 8[
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Table 2
The values of normalized MSERR change against dn in the collinear case under compound mechanicalÐelectric loading
conditions "s�

11 � 9\ s�
01 � 9\ D�

1 � 09−8s�
11 C N−0#

dn �"d−a#:a 9[0 9[1 9[4 0[9 0[4 1[9 2[9 3[9

GMA
I :GM�

I 6[22 4[95 2[33 1[71 1[59 1[49 1[39 1[24

at the tip A\ while GM�
I is the MSERR in a single crack problem with the same length under the

purely mechanical loading conditions "s�
11 � 9#[ The positive electric displacement loading makes

the normalized MSERR GMA
I :GM�

I increase[ On the contrary\ the negative electric displacement
loading makes the MSERR decrease[ In the collinear case\ the MSERR is quite dissimilar to the
SIF[ Table 2 shows the results of GMA

I :GM�
I in the collinear case[ It is seen that\ unlike the SIF\

the MSERR is dependent on the electric displacement loading and that the dependence is still
large although the normalized distance dn �"d−a#:a becomes very large[

Second\ the interaction problem of two cracks with di}erent lengths is considered[ The results
derived\ respectively\ under the compound mechanicalÐelectric loading conditions and under the
purely mechanical loading conditions are shown in Figs 5 and 6[ The in~uence of the electric
displacement loading on the SIF and the MSERR seems similar to that in the interaction problem
of two cracks with equal lengths discussed above\ although the neutral electric displacement angles
for the case of dt � 9[04a "dt is the distance between the tip A and the center of the short crack#
became 04\ 53 and 025>[

Finally\ the di}erence between the TPERR and the MSERR is discussed for the interaction
problem of two cracks with di}erent lengths under the compound mechanicalÐelectric loading
conditions "s�

11 � 9\ s�
01 � 9\ D�

1 � 9#[ As shown in Fig[ 7\ the plotted curves against the electric

Fig[ 5[ The values of KA
I :K�

I change against location angle 8[
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Fig[ 6[ The values of GMA
I :GM�

I change against location angle 8[

Fig[ 7[ The MSERR and the TPERR change against the electric displacement loading D�
1 [

displacement loading D�
1 with the legend 0 correspond to the single crack problem without

interaction\ while the curves with legend 1 correspond to the two cracks interaction problem[ It is
seen that the TPERR seems strongly dependent on the electric displacement loading level[ What!
ever\ the electric loading is positive or negative\ the TPERR always makes the negative values for
larger electric loading levels[ Quite contrary\ the MSERR has a linear relation to the electric
displacement loading level[ As the electric loading increases from D�

1 � −09−8s�
11 C N−0 to

D�
1 � 09−8s�

11 C N−0\ the MSERR increases proportionally although the slope is di}erent from
that in the single crack problem[
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Table 3
Numerical examinations by using a consistency check under compound mechanicalÐelectric loading conditions
"s�

11 � 9\ s�
01 � 9\ D�

1 � 09−8s�
11 C N−0#

8 �"dt � 9[02a# 29> 59> 89> 019>

Crack 0 "1a# KR
I :K�

I 0[1247 9[8807 9[7474 9[7009
KR

II:K
�
I −9[0030 −9[0798 −9[0072 −9[9041

KR
e :K�

I 0[0902 9[8685 9[8157 9[8943
KL

I :K�
I 0[9043 0[9026 0[9099 0[9947

KL
II:K

�
I 9[9916 −9[9909 −9[9924 −9[9939

KL
e :K�

I 0[9092 0[9966 0[9943 0[9923
J"0# −9[1839 −9[9882 9[9432 9[9898

Crack 1 "9[1a# KR
I :K�

I 9[6025 9[6385 9[6240 9[5462
KR

II:K
�
I 9[9705 9[9101 −9[9784 −9[1938

KR
e :K�

I 9[5174 9[4851 9[4455 9[4936
KL

I :K�
I 0[9005 9[6987 9[3485 9[1380

KL
II:K

�
I −9[9458 −9[1185 −9[1630 −9[1268

KL
e :K�

I 9[6510 9[4320 9[2834 9[1585
J"1# 9[1839 9[9882 −9[9432 −9[9898

J� 9[9999 9[9999 9[9999 9[9999

4[ Consistency check

The numerical results are con_rmed by using a consistency check proposed in this section[
Turning back to see Fig[ 1 and eqns "08#Ð"29#\ it is clear that the total contributions of multiple
cracks to the J!integral "i[e[\ the TPERR# should be zero due to the remote loading conditions
"Che and Hasebe\ 0887#]

J� � J "0#¦J "1#¦= = =¦J "i#¦= = =¦J "N# � 9 "20#

where J"i# is evaluated along the Gi close contour in Fig[ 1 and has the following relation with the
J!integrals J"Ri# and J"Li# of the right and left tips of the ith crack\ respectively]

J "i# � J "Ri#−J "Li# "i � 0\ 1\ [ [ [ \ N# "21#

When the SIF|s and the EDIF of all the crack tips are known\ the J"i# integral could be evaluated
by using eqns "19# and "10# without any di.culties[ Numerical examination for the two crack
interaction problem with di}erent lengths discussed above\ di}erent location angles\ 8 � 29\ 59\
89 and 019>\ and the same distance dt � 9[02a are shown in Table 3\ in which the consistency
check\ i[e[\ eqn "20# is satis_ed[

5[ Conclusions and discussion

From the above performed discussions\ the following conclusions are obtained]

"0# The PTED method is e}ective to treat multiple crack interaction problems in the piezoelectric
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ceramics[ This method is con_rmed in this paper by using a consistence check specially
proposed\ i[e[\ eqn "20#[

"1# The stress intensity factors at any tip for multiple crack interaction problems in piezoelectric
ceramics are no longer independent of the electric displacement loading as they would be in
the single crack problem[ The dependence of the SIF|s on the electric displacement loading is
governed not only by the electric loading level\ but also by the relative location of multiple
cracks[

"2# There are the so!called NEDA at which the electric loading has no e}ect on the interacting
SIF|s[ However\ the angles are dependent on the normalized distance between the centers of
multiple cracks[

"3# The electric displacement loading has much stronger e}ect on the mechanical strain energy
release rate than on the Mode I SIF in the present interaction problem[ The positive electric
displacement loading makes the MSERR increase\ while the negative electric displacement
loading makes the MSERR decrease[ Thus\ the same conclusion could be given as Pak and
Sun "0884a\ b# did in single crack problems[

"4# The MSERR increases proportionally as the electric loading level increases from the negative
values to positive values[ This means that the positive electric loading aids the crack propa!
gation while the negative electric loading impedes the crack propagation[ The only di}erence
of the MSERR curves between multiple crack problems and single crack problems is the slope
along which the MSERR changes[ In the present two parallel crack interaction problems\ the
slope of the MSERR is larger than that in single crack problems[
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Appendix

fjpip"s# � G0"Fk"Zk#\ Zk# "P � 0\ q � 9\ D1 � 9#

fjqip"s# � G1"Fk"Zk#\ Zk# "P � 0\ q � 9\ D1 � 9#

fjDip"s# � G2"Fk"Zk#\ Zk# "P � 0\ q � 9\ D1 � 9#

fjpiq"s# � G0"Fk"Zk#\ Zk# "P � 9\ q � 0\ D1 � 9#

fjqiq"s# � G1"Fk"Zk#\ Zk# "P � 9\ q � 0\ D1 � 9#

fjDiq"s# � G2"Fk"Zk#\ Zk# "P � 9\ q � 0\ D1 � 9#

fjpid"s# � G0"Fk"Zk#\ Zk# "P � 9\ q � 9\ D1 � 0#

fjqid"s# � G1"Fk"Zk#\ Zk# "P � 9\ q � 9\ D1 � 0#

fjDid"s# � G2"Fk"Zk#\ Zk# "P � 9\ q � 9\ D1 � 0#
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i � 0\ 1\ [ [ [ \ N j � 0\ 1\ [ [ [ \ N j � i

where Fk"Zk# are the elementary solutions discussed in Section 1[
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